Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1885, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019905

RESUMEN

Proteins often undergo large conformational changes when binding small molecules, but atomic-level descriptions of such events have been elusive. Here, we report unguided molecular dynamics simulations of Abl kinase binding to the cancer drug imatinib. In the simulations, imatinib first selectively engages Abl kinase in its autoinhibitory conformation. Consistent with inferences drawn from previous experimental studies, imatinib then induces a large conformational change of the protein to reach a bound complex that closely resembles published crystal structures. Moreover, the simulations reveal a surprising local structural instability in the C-terminal lobe of Abl kinase during binding. The unstable region includes a number of residues that, when mutated, confer imatinib resistance by an unknown mechanism. Based on the simulations, NMR spectra, hydrogen-deuterium exchange measurements, and thermostability measurements and estimates, we suggest that these mutations confer imatinib resistance by exacerbating structural instability in the C-terminal lobe, rendering the imatinib-bound state energetically unfavorable.


Asunto(s)
Antineoplásicos , Piperazinas , Mesilato de Imatinib , Piperazinas/farmacología , Pirimidinas/farmacología , Benzamidas , Antineoplásicos/farmacología , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl
2.
J Biol Chem ; 298(9): 102323, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931112

RESUMEN

Integrin α5ß1 mediates cell adhesion to the extracellular matrix by binding fibronectin (Fn). Selectivity for Fn by α5ß1 is achieved through recognition of an RGD motif in the 10th type III Fn domain (Fn10) and the synergy site in the ninth type III Fn domain (Fn9). However, details of the interaction dynamics are unknown. Here, we compared synergy-site and Fn-truncation mutations for their α5ß1-binding affinities and stabilities. We also interrogated binding of the α5ß1 ectodomain headpiece fragment to Fn using hydrogen-deuterium exchange (HDX) mass spectrometry to probe binding sites and sites of integrin conformational change. Our results suggest the synergistic effect of Fn9 requires both specific residues and a folded domain. We found some residues considered important for synergy are required for stability. Additionally, we show decreases in fibronectin HDX are localized to a synergy peptide containing contacting residues in two ß-strands, an intervening loop in Fn9, and the RGD-containing loop in Fn10, indicative of binding sites. We also identified binding sites in the α5-subunit ß-propeller domain for the Fn9 synergy site and in the ß1-subunit ßI domain for Fn10 based on decreases in α5ß1 HDX. Interestingly, the dominant effect of Fn binding was an increase in α5ß1 deuterium exchange distributed over multiple sites that undergo changes in conformation or solvent accessibility and appear to be sites where energy is stored in the higher-energy, open-integrin conformation. Together, our results highlight regions important for α5ß1 binding to Fn and dynamics associated with this interaction.


Asunto(s)
Fibronectinas , Integrina alfa5beta1 , Dominios y Motivos de Interacción de Proteínas , Sitios de Unión , Adhesión Celular , Medición de Intercambio de Deuterio , Fibronectinas/química , Fibronectinas/genética , Integrina alfa5beta1/química , Mutación , Oligopéptidos/química , Solventes
3.
Elife ; 112022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532124

RESUMEN

Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor (VWF) to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N- and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.


Asunto(s)
Plaquetas , Factor de von Willebrand , Plaquetas/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Urea/metabolismo , Factor de von Willebrand/metabolismo
4.
J Mol Biol ; 434(5): 167439, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34990654

RESUMEN

The 33 members of the transforming growth factor beta (TGF-ß) family are fundamentally important for organismal development and homeostasis. Family members are synthesized and secreted as pro-complexes of non-covalently associated prodomains and growth factors (GF). Pro-complexes from a subset of family members are latent and require activation steps to release the GF for signaling. Why some members are latent while others are non-latent is incompletely understood, particularly because of large family diversity. Here, we have examined representative family members in negative stain electron microscopy (nsEM) and hydrogen deuterium exchange (HDX) to identify features that differentiate latent from non-latent members. nsEM showed three overall pro-complex conformations that differed in prodomain arm domain orientation relative to the bound growth factor. Two cross-armed members, TGF-ß1 and TGF-ß2, were each latent. However, among V-armed members, GDF8 was latent whereas ActA was not. All open-armed members, BMP7, BMP9, and BMP10, were non-latent. Family members exhibited remarkably varying HDX patterns, consistent with large prodomain sequence divergence. A strong correlation emerged between latency and protection of the prodomain α1-helix from exchange. Furthermore, latency and protection from exchange correlated structurally with increased α1-helix buried surface area, hydrogen bonds, and cation-pi bonds. Moreover, a specific pattern of conserved basic and hydrophobic residues in the α1-helix and aromatic residues in the interacting fastener were found only in latent members. Thus, this first comparative survey of TGF-ß family members reveals not only diversity in conformation and dynamics but also unique features that distinguish latent members.


Asunto(s)
Proteínas de la Superfamilia TGF-beta , Enlace de Hidrógeno , Conformación Proteica en Hélice alfa , Dominios Proteicos , Transducción de Señal , Proteínas de la Superfamilia TGF-beta/química , Proteínas de la Superfamilia TGF-beta/metabolismo
5.
Sci Rep ; 10(1): 5324, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210275

RESUMEN

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs. Here, we describe the structure-guided development of XL177A, which irreversibly inhibits USP7 with sub-nM potency and selectivity across the human proteome. Evaluation of the cellular effects of XL177A reveals that selective USP7 inhibition suppresses cancer cell growth predominantly through a p53-dependent mechanism: XL177A specifically upregulates p53 transcriptional targets transcriptome-wide, hotspot mutations in TP53 but not any other genes predict response to XL177A across a panel of ~500 cancer cell lines, and TP53 knockout rescues XL177A-mediated growth suppression of TP53 wild-type (WT) cells. Together, these findings suggest TP53 mutational status as a biomarker for response to USP7 inhibition. We find that Ewing sarcoma and malignant rhabdoid tumor (MRT), two pediatric cancers that are sensitive to other p53-dependent cytotoxic drugs, also display increased sensitivity to XL177A.


Asunto(s)
Inhibidores de Proteasas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Células MCF-7 , Inhibidores de Proteasas/química , Peptidasa Específica de Ubiquitina 7/química , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación/efectos de los fármacos
6.
J Pharm Biomed Anal ; 182: 113141, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32036298

RESUMEN

The higher-order structure of a protein defines its function, and protein structural dynamics are often essential for protein binding and enzyme catalysis. Methods for protein characterization in solution are continuously being developed to understand and explore protein conformational changes with regards to function and activity. The goal of this study was to survey the use of combining HDX-MS global conformational screening with in silico modeling and continuous labeling peptide-level HDX-MS as an approach to highlight regions of interest within an enzyme required for biocatalytic processes. We surveyed in silico modeling correlated with peptide level HDX-MS experiments to characterize and localize transaminase enzyme structural dynamics at different conditions. This approach was orthogonally correlated with a global Size-Exclusion-HDX (SEC-HDX) screen for global conformational comparison and global alpha-helical content measurements by circular dichroism. Enzymatic activity and stereo-selectivity of transaminases were compared at different reaction-solution conditions that forced protein conformational changes by increasing acetonitrile concentration. The experimental peptide-level HDX-MS results demonstrated similar trends to the modeling data showing that certain regions remained folded in transaminases ATA-036 and ATA-303 with increasing acetonitrile concentration, which is also associated with shifting stereoselectivity. HDX modeling, SEC-HDX and CD experimental data showed that transaminase ATA-234 had the highest level of global unfolding with increasing acetonitrile concentration compared to the other two enzymes, which correlated with drastically reduced product conversion in transamination reaction. The combined HDX modeling/experimental workflow, based on enzymatic reactions studied at different conditions to induce changes in enzyme conformation, could be used as a tool to guide directed evolution efforts by identifying and focusing on the regions of an enzyme required for reaction product conversion and stereoselectivity.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Péptidos/química , Proteínas/química , Solventes/química , Dicroismo Circular , Simulación por Computador , Enzimas/química , Simulación de Dinámica Molecular , Conformación Proteica , Desplegamiento Proteico , Estereoisomerismo
7.
Nat Commun ; 10(1): 5481, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792290

RESUMEN

Integrin αVß8, which like αVß6 functions to activate TGF-ßs, is atypical. Its ß8 subunit binds to a distinctive cytoskeleton adaptor and does not exhibit large changes in conformation upon binding to ligand. Here, crystal structures, hydrogen-deuterium exchange dynamics, and affinity measurements on mutants are used to compare αVß8 and αVß6. Lack of a binding site for one of three ßI domain divalent cations and a unique ß6-α7 loop conformation in ß8 facilitate movements of the α1 and α1' helices at the ligand binding pocket toward the high affinity state, without coupling to ß6-α7 loop reshaping and α7-helix pistoning that drive large changes in ßI domain-hybrid domain orientation seen in other integrins. Reciprocal swaps between ß6 and ß8 ßI domains increase affinity of αVß6 and decrease affinity of αVß8 and define features that regulate affinity of the ßI domain and its coupling to the hybrid domain.


Asunto(s)
Integrinas/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Cadenas beta de Integrinas/química , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligandos , Dominios Proteicos , Estructura Secundaria de Proteína , Alineación de Secuencia
8.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
9.
Cancer Discov ; 9(6): 738-755, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30952657

RESUMEN

KRAS is the most frequently mutated oncogene. The incidence of specific KRAS alleles varies between cancers from different sites, but it is unclear whether allelic selection results from biological selection for specific mutant KRAS proteins. We used a cross-disciplinary approach to compare KRASG12D, a common mutant form, and KRASA146T, a mutant that occurs only in selected cancers. Biochemical and structural studies demonstrated that KRASA146T exhibits a marked extension of switch 1 away from the protein body and nucleotide binding site, which activates KRAS by promoting a high rate of intrinsic and guanine nucleotide exchange factor-induced nucleotide exchange. Using mice genetically engineered to express either allele, we found that KRASG12D and KRASA146T exhibit distinct tissue-specific effects on homeostasis that mirror mutational frequencies in human cancers. These tissue-specific phenotypes result from allele-specific signaling properties, demonstrating that context-dependent variations in signaling downstream of different KRAS mutants drive the KRAS mutational pattern seen in cancer. SIGNIFICANCE: Although epidemiologic and clinical studies have suggested allele-specific behaviors for KRAS, experimental evidence for allele-specific biological properties is limited. We combined structural biology, mass spectrometry, and mouse modeling to demonstrate that the selection for specific KRAS mutants in human cancers from different tissues is due to their distinct signaling properties.See related commentary by Hobbs and Der, p. 696.This article is highlighted in the In This Issue feature, p. 681.


Asunto(s)
Alelos , Mutación , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Transformación Celular Neoplásica/genética , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Fenotipo , Conformación Proteica , Proteoma , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Relación Estructura-Actividad
10.
Elife ; 72018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30281023

RESUMEN

HAP2 is a class II gamete fusogen in many eukaryotic kingdoms. A crystal structure of Chlamydomonas HAP2 shows a trimeric fusion state. Domains D1, D2.1 and D2.2 line the 3-fold axis; D3 and a stem pack against the outer surface. Surprisingly, hydrogen-deuterium exchange shows that surfaces of D1, D2.2 and D3 closest to the 3-fold axis are more dynamic than exposed surfaces. Three fusion helices in the fusion loops of each monomer expose hydrophobic residues at the trimer apex that are splayed from the 3-fold axis, leaving a solvent-filled cavity between the fusion loops in each monomer. At the base of the two fusion loops, Arg185 docks in a carbonyl cage. Comparisons to other structures, dynamics, and the greater effect on Chlamydomonas gamete fusion of mutation of axis-proximal than axis-distal fusion helices suggest that the apical portion of each monomer could tilt toward the 3-fold axis with merger of the fusion helices into a common fusion surface.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Fusión de Membrana , Esporas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
11.
Methods Mol Biol ; 1764: 153-171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605914

RESUMEN

Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) can provide valuable information about binding, allostery, and other conformational effects of interaction in protein complexes. For protein-ligand complexes, where the ligand may be a small molecule, peptide, nucleotide, or another protein(s), a typical experiment measures HDX in the protein alone and then compares that with HDX for the protein when part of the complex. Multiple factors are critical in the design and implementation of such experiments, including thoughtful consideration of the percent protein bound, the effects of the labeling protocol on the protein complex, and the dynamic range of the analysis method. With careful planning and techniques, HDX MS analysis of protein complexes can be very informative.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/análisis , Humanos , Hidrógeno/química , Unión Proteica , Proteínas/química , Proteínas/metabolismo
12.
J Pept Sci ; 24(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29322650

RESUMEN

Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the ß-amyloid(1-42) (Aß) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aß-specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aß antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aß(4-10) peptide has been identified as an epitope for the polyclonal anti-Aß(1-42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single-site mutations within the Aß-epitope sequence on the antigen-antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose-immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high-resolution MALDI-Fourier transform-Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme-linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aß(4-10) peptides upon affinity binding to a monoclonal anti-Aß(1-17) antibody showed complete loss of binding by Ala-site mutation of any residue of the Aß(4-10) epitope. Surface plasmon resonance affinity determination of wild-type Aß(1-17) to the monoclonal Aß antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aß-specific antibodies with improved therapeutic efficacy.


Asunto(s)
Alanina/genética , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales/inmunología , Epítopos/química , Alanina/inmunología , Péptidos beta-Amiloides/genética , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Epítopos/inmunología , Humanos , Espectrometría de Masas , Mutación
13.
EMBO J ; 37(3): 384-397, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343545

RESUMEN

Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF-ß family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid-cleaved GDF8 pro-complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro-complexes reveals a V-shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring-like, cross-armed conformation of latent TGF-ß1. Surprisingly, Tolloid-cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen-deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain-growth factor dissociation, increased exchange in regions that correspond in pro-TGF-ß1 to the α1-helix, latency lasso, and ß1-strand in the prodomain and to the ß6'- and ß7'-strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain-growth factor interfaces and primes the growth factor for release from the prodomain.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Miostatina/metabolismo , Precursores de Proteínas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Línea Celular , Medición de Intercambio de Deuterio , Drosophila , Activación Enzimática/fisiología , Furina/metabolismo , Células HEK293 , Humanos , Microscopía Electrónica , Metaloproteinasas Similares a Tolloid/metabolismo
14.
J Am Soc Mass Spectrom ; 29(1): 174-182, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971440

RESUMEN

Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. Graphical Abstract ᅟ.


Asunto(s)
Espectrometría de Masas/métodos , Proteínas tau/química , Anticuerpos Monoclonales , Benzotiazoles/química , Sitios de Unión , Medición de Intercambio de Deuterio/métodos , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Humanos , Microtúbulos/metabolismo , Conformación Proteica , Solventes/química , Espectrometría de Fluorescencia , Proteínas tau/inmunología , Proteínas tau/metabolismo
15.
Cell Chem Biol ; 24(12): 1490-1500.e11, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29056421

RESUMEN

Deubiquitinating enzymes (DUBs) have garnered significant attention as drug targets in the last 5-10 years. The excitement stems in large part from the powerful ability of DUB inhibitors to promote degradation of oncogenic proteins, especially proteins that are challenging to directly target but which are stabilized by DUB family members. Highly optimized and well-characterized DUB inhibitors have thus become highly sought after tools. Most reported DUB inhibitors, however, are polypharmacological agents possessing weak (micromolar) potency toward their primary target, limiting their utility in target validation and mechanism studies. Due to a lack of high-resolution DUB⋅small-molecule ligand complex structures, no structure-guided optimization efforts have been reported for a mammalian DUB. Here, we report a small-molecule⋅ubiquitin-specific protease (USP) family DUB co-structure and rapid design of potent and selective inhibitors of USP7 guided by the structure. Interestingly, the compounds are non-covalent active-site inhibitors.


Asunto(s)
Inhibidores de Proteasas/farmacología , Tiofenos/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Tiofenos/química , Ubiquitina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
16.
Cell Rep ; 20(12): 2860-2875, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930682

RESUMEN

The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.


Asunto(s)
Proteolisis , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/química , Pirimidinas/farmacología , Relación Estructura-Actividad , Ubiquitinación/efectos de los fármacos
17.
Nature ; 542(7639): 55-59, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28117447

RESUMEN

Integrins are adhesion receptors that transmit force across the plasma membrane between extracellular ligands and the actin cytoskeleton. In activation of the transforming growth factor-ß1 precursor (pro-TGF-ß1), integrins bind to the prodomain, apply force, and release the TGF-ß growth factor. However, we know little about how integrins bind macromolecular ligands in the extracellular matrix or transmit force to them. Here we show how integrin αVß6 binds pro-TGF-ß1 in an orientation biologically relevant for force-dependent release of TGF-ß from latency. The conformation of the prodomain integrin-binding motif differs in the presence and absence of integrin binding; differences extend well outside the interface and illustrate how integrins can remodel extracellular matrix. Remodelled residues outside the interface stabilize the integrin-bound conformation, adopt a conformation similar to earlier-evolving family members, and show how macromolecular components outside the binding motif contribute to integrin recognition. Regions in and outside the highly interdigitated interface stabilize a specific integrin/pro-TGF-ß orientation that defines the pathway through these macromolecules which actin-cytoskeleton-generated tensile force takes when applied through the integrin ß-subunit. Simulations of force-dependent activation of TGF-ß demonstrate evolutionary specializations for force application through the TGF-ß prodomain and through the ß- and not α-subunit of the integrin.


Asunto(s)
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Integrinas/química , Integrinas/metabolismo , Factor de Crecimiento Transformador beta1/agonistas , Factor de Crecimiento Transformador beta1/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Evolución Molecular , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Factor de Crecimiento Transformador beta1/metabolismo
18.
J Am Soc Mass Spectrom ; 28(5): 795-802, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27527097

RESUMEN

Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Espectrometría de Masas/métodos , Agregado de Proteínas , Medición de Intercambio de Deuterio/métodos , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química
19.
Expert Rev Proteomics ; 12(2): 159-69, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25711416

RESUMEN

IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.


Asunto(s)
Terapia Biológica , Deuterio/química , Hidrógeno/química , Interleucina-23/química , Biología Computacional , Humanos , Interleucina-23/metabolismo , Espectrometría de Masas/métodos , Unión Proteica , Conformación Proteica , Receptores de Interleucina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...